Automotive glossary starting with letter E

Electronic Air Suspension

The Electronic Air Suspension System (EAS) automatically adapts damping and spring characteristics, along with the vehicle's body level to driving conditions and load changes.

Electronic brake force distribution

Electronic Brake force Distribution (EBD). It actually senses the weight in the rear of the car (trunk, rear seat, or even how much fuel is in the tank) and sends more force to the rear brakes accordingly. So you experience more effective, better balanced braking.

Electronic Control Module

Electronic Control Modules are subsystems consisting of microprocessors and assorted signal inputs and outputs which can control different components within a vehicle (ABS, airbags, radar systems etc.).

Electronic Control Unit

The Electronic Control Unit (ECU) controls the fuel injection system and the ignition timing of almost any modern engine. Gathering information from various input sensors (coolant temperature, barometric pressure and air flow speed), the ECU can determine the optimum settings for the injection and ignition timing.

Electronic Differential Lock

The Electronic Differential Lock (EDS) is a Volkswagen technology which was developed to substitute most of the attributes of a conventional differential. Instead of being a mechanical device which regulates the torque distribution between two or more drive wheels, EDS uses the ABS sensors to detect wheelspin and brake each wheel individually , thus creating the illusion of torque distribution. Due to the stress it can create on the brakes by hard use, the system only works up to speeds of approximately 25 mph.

Electronic Fuel Injection

Developed from the need of a better fuel atomization at the fuel intake, the electronic fuel injection (EFI) has practically replaced the carburetor and the mechanical fuel injection altogether. Relying purely on electronics that calculate how to blend and distribute a precisely measured amount of fuel and air mixture into each cylinder. This in turn makes for a much more efficient combustion process, leading to a better fuel economy and more power.

Electronic Stability Program

The Electronic Stability Program (ESP) was co-developed by Bosch and Mercedes-Benz and is now one of the most well spread active safety systems in the world. Even though it uses different names, depending on the car manufacturer, all ESP systems work basically the same. First, a central ECU gathers information from several sensors, including the ABS wheel sensors, a steering angle sensor, yaw rate sensor and lateral acceleration sensor.

Then, using this information the microprocessor calculates if the vehicle has started engaging in oversteer or understeer. If that is the case, the ECU automatically brakes each wheel individually in order to stabilize the vehicle. In other words ESP reacts only after a vehicle has started to skid/drift and tries to counteract the movement.

Electronically Controlled Automatic

ECA (Electronically Controlled Automatic) is an automatic transmission that has its shift timing controlled by an Electronic Control Unit , which takes into account various factors such as road conditions or whether the vehicle is pulling a trailer or climbing steep hill.

Emergency Brake Assistance

The EBA system from Mercedes-Benz is designed to make use of the best capabilities the ABS (Anti-lock Braking System) has to offer in the event of an emergency braking. Electronic Brake Assistance achieves this by detecting if a faster or harder than usual application of the brake pedal - such as under a panic situation - has happened and acts accordingly by providing the maximum amount of pressure into the brake cylinders, thus making the car enter the ABS zone faster and shortening the stopping distance by a very high margin.

Engine Braking

Engine braking is a technique of slowing down a vehicle without the help of brakes but by using the engine's own power. It is best done with a manual transmission, although automatics can also be up to the task, especially modern ones.

Exhaust Gas Recirculation

EGR is essentially a method of reducing NOx emissions coming out of the exhaust by recirculating a fraction of the engine's exhaust gas back into the intake manifold. Even though the expelled gas is coming out with a very high temperature it acts as an inert filler that actually absorbs heat during the combustion process, thus reducing the temperature reached in the cylinders.